Traductions :
lubricating oil inlet : admission d'huile de graissage
turbine housing single scroll : turbine logeant le rouleau simple
ball bearing : roulement à billes
turbine wheel radial-flow turbine : la roue de turbine radial-coulent turbine
exhaust gas : gaz d'échappement
v-clamp : v-bride
bearing housing : logement des roulements
cooling water inlet : admission de l'eau de refroidissement
seal plate : plat de joint
compressor housing : logement de compresseur
compressor impeller : roue à aubes de compresseur
compressed air : air comprimé
Autres schémas :
1. Entrée des gaz d'échappement
2. Evacuation des gaz d'échappement
3. Entrée d'air frais
4. Alimentation des cylindres en air comprimé
1. Entrée d'air frais
2. Alimentation des cylindres en air comprimé
3. Liaison circuit de suralimentation/régulateur de suralimentation
4. Echappement des gaz vers la turbine
5. Circuit dérivé des gaz d'échappement - régulation de la suralimentation
6. Evacuation des gaz d'échappement
Infos sur les turbos IHI :
IHI turbo.
The VF series (VF22, VF23, VF24, VF29, VF30) are the most common direct replacement turbos. All VF-series turbochargers use the same roller bearing, water-cooled core assembly. The differences are in their wheels and housings to achieve different flows.
The VF22 has the largest potential for peak horsepower. In other words, in the IHI model range, the VF 22 supports the highes boost levels. It is capable of running up to 25 psi. Because it is a roller bearing turbo, turbo lag is minimal...the boost comes on around 3300 rpm. Expect to max out the VF22 somewhere in the 400-450 hp range.
The VF23 starts the middle ground. It comes on boost around 3100 rpm and is capable of running 20 psi of boost. Expect to max out the VF23 somewhere in the 300-350 hp range.
The VF 24 starts to come on around 2900 rpm and will significantly improve power through the midrange over the stock TD04 turbo. However, the VF 24 is only capable of running around 17 psi.
The VF23 and VF 24 are a great replacement for those who value drivability higher than maximum power.
The VF29 & VF30 delivers a very wide increase in torque over the standard TD-series turbos. It is important to note that the VF30 is not a roller bearing turbo.
----------------------------------------------------------------------------------------------------
VF22
This turbo has the highest output potential of all of the IHI VF series turbos and is the best choice for those who are looking for loads of top end power. The top end power however, does not come without a cost. The VF22 spools significantly slower than the rest of the IHI models due to the larger P20 exhaust housing and is much less suited for daily driving than some of the other models. Although the largest VF series turbo, the VF22 is not quite optimal for stroked engines or those who wish to run more than 20PSI of boost.
VF23
This turbo is considered a great all-around turbo. Like the VF22 it utilizes the largest P20 exhaust housing. This housing is mated with a smaller compressor housing of the of the VF24. This turbo is considered optimal in applications with range from mild to slightly wild. It does not have the same top end power of the VF22, but spools up significantly quicker.
VF24
This turbo shares its compressor housing with the VF23 however, this housing is mated with a smaller (P18) exhaust side. The smaller characteristics of this turbo allow it to provide ample bottom end power and quick spool. This turbo is very popular for Imprezas with automatic transmissions and Group N rally cars.
VF28
This turbo came standard on the STi Version 5. In terms of overall size, it is smaller than the VF22, VF30 and VF34, and about same size as the VF23.
VF29
This Turbo is nearly identical to the VF24, with the same compressor and exhaust housings. However the compressor wheel in the VF29 is has been changed slightly. The changes made to the compressor wheel in this model are generally viewed as improvements, and as such this unit is typically chosen over the VF24.
VF30
The VF30 is commonly considered the best bang for the buck turbo in the IHI VF series line. A relatively new model the VF30 features the same exhaust housing as the VF24 but a larger compressor side similar to the VF22. The combination of these two parts results in increased output potential without the lag associated with the VF22. Although it doesn't offer the top end supremacy of the VF22, the VF30 is a great compromise between these unit and the quicker spooling models.
VF34
The VF34 is nearly identical to the VF30, with the same exhaust housing and compressor. However the VF34 goes back to the ball bearing design, and in doing so achieves full boost approximately 500RPM sooner than the comparable VF30. The VF34 is the most recent IHI design and as such costs slightly more than its counterpart. Top end performance and maximum output are identical to the 30.
VF35
VF35 The VF35 has identical internals as the VF30 and it uses divided thrust bearings. However, the exhaust housing is a P15 which means this turbo will have fantastic spool characteristics. This turbo is standard on the new WRX Type RA. LIMITED SUPPLY.
VF36
Roller bearing version of the twin scroll VF37, also has a titanium turbine and shaft for even quicker spool. Same compressor housing as VF30/34, however twin scroll P25 exhaust housing provides slightly better top end output due to reduced exhaust pulse interference. This turbo is good for 400HP and used on JDM STI Spec C from 2003 onwards.
VF37 (thrust bearing)
Enter the age of twin scroll IHI turbos. Same compressor housing as VF30/34, however has a new twin scroll P25 exhaust housing that provides slightly better top end output due to reduced exhaust pulse interference. Twin scroll also provides better spool up for improved low down response over the VF30/34. This turbo is good for 400HP and used on JDM STI from 2003 onwards.
VF38
Twin scroll turbo with titanium turbine and shaft. Smaller compressor housing than VF36/VF37 provides tremendous spool up capabilities but less top end than VF36/37. The spool capabilities of this turbo are demonstrated on the JDM Legacy GT, which reaches peak torque at 2400RPM.
VF39
Single scroll turbo used on USDM STI and latest 2.5L STIs released internationally. Smaller than VF30/VF34.
VF42
Exclusive turbo to the S203/S204 models, this features a twin scroll design with a slightly larger compressor than the VF36/37 turbos and different turbine design (more blades). The VF42 is a roller-bearing turbo and is likely of similar size to the VF22 turbo, but with twin scroll exhaust housing for faster spool and superior top end performance due to reduced exhaust pulse interference.
Mitsubishi TD04L-13T
(390cfm at 14.7psi, 200-275whp, Bolt-On)
This is the standard equipment turbocharger used on the USDM Subaru Impreza WRX. It can be found on all the current model years from 2002-2007.
Expect to achieve full boost with the proper mods and a quality tune between 2500-3000rpms.
Compressor Map
Blouch Upgrade
Deadbolt Upgrade
Forced Performance Upgrade (490cfm at 18.0psi)
NASIOC Member OppositeLock Results
NASIOC Member JasperSTi Results
IHI VF10
This is the standard equipment turbocharger used on the USDM Legacy 4EAT MY91-94. No other information known at this time.
IHI VF11
This is the standard equipment turbocharger used on the USDM Legacy 5MT MY91-94. No other information known at this time.
IHI VF12
This is the standard equipment turbocharger used on the JDM Legacy RS MY89-93. No other information known at this time.
IHI VF13
This is the standard equipment primary turbocharger used on the JDM Legacy MY93-95. No other information known at this time.
IHI VF14
This is the standard equipment secondary turbocharger used on the JDM Legacy MY93-95. No other information known at this time.
IHI VF18
This is the standard equipment primary turbocharger used on the JDM Legacy MY96. No other information known at this time.
IHI VF19
This is the standard equipment secondary turbocharger used on the JDM Legacy MY96. No other information known at this time.
IHI VF20
This is the standard equipment turbocharger used on the JDM Legacy MY97. No other information known at this time.
IHI VF22
(490cfm at 18.0psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM V3 Subaru Impreza WRX and optional on the JDM Subaru Impreza WRX STi 22b. Of all the IHI models, the VF22 has the largest potential for peak horsepower, and is capable of supporting the highest boost levels. It is capable of running up to 25 psi. The VF22 is a roller bearing turbo that utilizes the P20 exhaust housing.
Expect to achieve full boost with the proper mods and a quality tune between 3200-3700rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Member powerlabs Results
Purchase $800
IHI VF23
(388cfm at 18psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM Subaru Impreza WRX STi 22b. The VF23 is a ball bearing turbocharger that utilizes the P20 exhaust housing like the VF22. This housing is mated with the smaller compressor housing of the VF24 for fast response and excellent low and mid-range performance. It does not have the same top end power of the VF22, but spools up slightly quicker.
Expect to achieve full boost with the proper mods and a quality tune between 2800-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Member ride5000 Results
NASIOC Member overboost Results
IHI VF24
(425cfm at 18psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM V4 Subaru Impreza WRX STi. This turbo shares its compressor housing with the VF23, however, this housing is mated with a smaller (P18) exhaust side. The smaller characteristics of this turbo allow it to provide ample bottom end power and quick spool. This turbo is very popular for Imprezas with automatic transmissions and Group-N rally cars.
Expect to achieve full boost with the proper mods and a quality tune between 2800-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Members Davenow & mbiker97 Results
IHI VF25
This is the standard equipment primary turbocharger used on the JDM Legacy B4. Utilizes a thrust-bearing design and a P12 exhaust housing. No other information known at this time.
IHI VF26
(400cfm at 18psi)
This is the standard equipment primary turbocharger used on the JDM Legacy B4. Utilizes a divided thrust-bearing design and a B14 exhaust housing. No other information known at this time.
IHI VF27
(420cfm at 18psi)
This is the standard equipment secondary turbocharger used on the JDM Legacy. Utilizes a ball-bearing design and a P18 exhaust housing. No other information known at this time.
IHI VF28
(425cfm at 18psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM V5 Subaru Impreza WRX STi.
Expect to achieve full boost with the proper mods and a quality tune between 2800-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
IHI VF29
(425cfm at 18psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger on the JDM V6 Subaru Impreza WRX STi. The VF29 is nearly identical to the VF24, with the same compressor and exhaust housings. However, the compressor wheel in the VF29 has been changed slightly. The changes made to the compressor wheel in this model are generally viewed as improvements, and as such, this unit is typically chosen over the VF24. Has a different location for the pressure hose on the wastegate actuator.
Expect to achieve full boost with the proper mods and a quality tune between 2900-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
IHI VF30
(460cfm at 18psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM V7 Subaru Impreza WRX STi. The VF30 is a thrust-bearing turbo that utilizes the P18 exhaust housing of a VF24 and the compressor housing sized between a VF23 and a VF22.
Expect to achieve full boost with the proper mods and a quality tune between 3000-3500rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Member itsawagon Results
IHI VF31
Utilizes a P11 exhaust housing. No other information known at this time.
IHI VF32
This is the standard equipment primary turbocharger used on the JDM Legacy. It utilizes a ball-bearing design. No other information known at this time.
IHI VF33
This is the standard equipment primary turbocharger used on the JDM Legacy. It utilizes a P11 exhaust housing and a divided thrust-bearing design. No other information known at this time.
IHI VF34
(460cfm at 18psi, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM V7 Subaru Impreza WRX STi Spec-C. The VF34 is nearly identical to the VF30 but has improved spool up due to its roller bearing design. It also utilizes a P18 exhaust housing.
Expect to achieve full boost with the proper mods and a quality tune between 3000-3500rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Member wrx1905 Results
NASIOC Member Sports Wagon Results
Purchase $850
IHI VF35
(425cfm, 250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the JDM Subaru Impreza WRX. The VF35 is similar to the VF34. It utilizes the same compressor housing and the same compressor inducer size. The differences are in the divided thrust-bearing design and the P15 exhaust housing. This allows the VF35 to spool slightly quicker than the VF34 at the cost of less top-end performance.
Expect to achieve full boost with the proper mods and a quality tune between 2800-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
IHI VF36
(430cfm, 250-325whp, Modification Required)
This is the standard equipment turbocharger used on the JDM V8-V9 Subaru Impreza WRX STI Spec-C Type RA. The VF36 is a twin-scroll turbocharger that utilizes a ball bearing design, a P25 exhaust housing, and Titanium (possibly TiAl?) compressor wheel for improved spool. It is essentially a fast spooling VF34.
Expect to achieve full boost with the proper mods and a quality tune between 2800-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Member dug-e-fresh Results 1
NASIOC Member dug-e-fresh Results 2
IHI VF37
(430cfm, 250-325whp, Modification Required)
This is the standard equipment turbocharger used on the JDM V8-V9 Subaru Impreza WRX STI. The VF37 is a twin-scroll turbocharger that utilizes a thrust bearing design and a P25 exhaust housing. It is essentially a fast spooling VF30.
Expect to achieve full boost with the proper mods and a quality tune between 2800-3300rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles.
NASIOC Member deathinacan Results
IHI VF38
The VF38 is a twin-scroll that utilizes a Titanium turbine and shaft. This turbocharger yields tremendous spool-up but offers less top-end than the VF36/VF37. The spool capabilities of this turbo are demonstrated on the JDM Legacy GT, which reaches peak torque at 2400RPM.
IHI VF39
(250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the USDM Subaru Impreza WRX STI. It can be found on all model years from 2004-2006. The VF39 utilizes a thrust bearing design and the P18 exhaust housing.
Expect to achieve full boost with the proper mods and a quality tune between 3000-3500rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles that utilize this turbo aftermarket. Though they are prone to cracking, VF39’s can be had for very cheap if bought used.
NASIOC Member trbowrx Results
NASIOC Member javid Results
NASIOC Member downsti Results
Purchase
IHI VF40
This is the standard equipment turbocharger used on the USDM Subaru Legacy GT. It can be found on all the current model years from 2005-2006.
Deadbolt Upgrade
IHI VF41
This is the standard equipment turbocharger used on the JDM Subaru Forester STI. It utilizes a P18 exhaust housing.
Info
Info
IHI VF42
This is the standard equipment turbocharger used on the JDM Subaru Impreza WRX STi S203 and S204. The VF42 features a twin-scroll design with a slightly larger compressor than the VF36/VF37 turbos and different turbine design (more blades). The VF42 is a roller-bearing turbo and is similar in size to the VF22 turbo, but the twin-scroll exhaust housing yields faster spool-up and a superior top-end.
IHI VF43
(250-325whp, Bolt-On)
This is the standard equipment turbocharger used on the MY07 USDM Subaru Impreza WRX STI. It can be found on both base STI's and STI Limited's. The VF43 utilizes a thrust bearing design and the P18 exhaust housing. The difference between the VF43 and the VF39 used previously on STI's is the size of the wastegate. The VF43 has a larger wastegate designed to reduce boost creep issues.
Expect to achieve full boost with the proper mods and a quality tune between 3000-3500rpms. 2002-2005 WRX owners will need fuel upgrades for this turbocharger and proper engine management is highly recommended for all vehicles that utilize this turbo aftermarket.
IHI VF46
This is the standard equipment turbocharger used on the USDM Subaru Legacy GT MY07. The VF46 utilizes a new five-arc scroll design to improve low and midrange performance over the previous VF40.
IHI -> Ishikawajima-Harima Heavy Industries
Twin Scroll
Twin Scroll Vs Single Scroll
Mitsubishi TD04L-13T
(390cfm à 1bar, 200-275whp, Plug'n'Play)
Turbo d'origine des WRX 2001-2007
Full Boost vers 2500-3000tr/min
IHI VF22
(490cfm à 1.25bar, 250-325whp, Plug'n'Play)
Turbo d'origine des WRX JDM V3 et optionel sur la WRX STi 22b
De tout les IHI, il à un large potentiel a sortir beaucoup de cv, et de supporter beaucoup de pression (1.72bar)
Turbo sur roulement à bille avec une turbine d'echappement P20
Full Boost vers 3200-3700tr/min
IHI VF23
(388cfm à 1.25bar, 250-325whp, Plug'n'Play)
Turbo d'origine des WRX STi 22b
Turbo sur roulement à bille avec une turbine d'echappement P20
Monté sur le compresseur du VF24, permettant une reponse rapide
Très bon flux a bas et mi-régime
Meilleur Spool que le VF22
Full Boost vers 2800-3300tr/min
IHI VF34
(460cfm à 1.25bar, 250-325whp, Plug'n'Play)
Turbo des WRX STi 7 Spec C
Identique au VF30, mais à roulement
Turbine P18
Spool plus rapide que le VF30
Full Boost vers 3000-3500tr/min
IHI VF37
(430 cfm, 250-325whp, Modification nécessaire)
Turbo des Sti JDM V8/9
Turbo Twin scroll
Turbine P25
Spool plus vite que le VF30
IHI VF39
(250-325whp, Plug'n'Play)
Turbo des WRX STi USDM 03-05
Turbo à pallier
Turbine P18
Full Boost vers 3000-3500tr/min
Photo VF39 Vs FP Green 20G
VF39 Vs Greddy T67
VF 48
VF52 vs VF40
Forced Performance Standard 16G
(510cfm, 275-330whp, Plug'n'Play)
TD05H-16G-7cm2
Efficacité compresseur 77%
Durite d'admission 2.4"
Wastegate 0.55bar
Supporte 1.6bar
Refroidissement à eau et circuit d'huile d'origine
Full Boost 3200-3700tr/min
Forced Performance 20G
(44 lb/min, 330-440whp, Plug'n'Play)
TDO6SL2 7 ou 8cm²
Durite d'admission 2.4"
Wastegate interne (1bar) ou externe
Supporte une pression de 1.7bar
Full Boost 3500-4000tr/min
Forced Performance Green
(49 lb/min, 350-490whp, Plug'n'Play)
TD06-20G 7 ou 8cm²
Model "vert" possédant un roulement à bille propriétaire Forced Performance
Durite d'admission 2.4" (option 3'' moins de Lag et plus de puissance)
Wastegate interne (1bar) ou externe
Supporte une pression de 2bar
Full Boost 3800-4300tr/min
Forced Performance Red
(950CFM, 65 lb/min, 400-650whp, Modification pour le montage)
TD06-20G 7 ou 8cm²
Diamètre Huile 10mm x 1.5mm (comme d'origine)
Water in/out 14mm x 1.5 mm (comme d'origine)
Wastegate interne (1bar) ou externe
TD05H-16G
TD05H-18G
TD05h-20G
TD06h-20G
La famille des APS
Air Power System !
APS SR40
(595cfm à 1bar, 300-350whp, Plug'n'play)
APS SR56
(56 lb/min, 400-550whp, Plug'n'play)
APS Twin Scroll TSR70(70 lb/min, 500-700whp, Turbo Kit)
321StainlessSteel twin scroll Up pipe
External Tial 44mm Wastegate
304StainlessSteel Downpipe
Toutes les durites nécessaires au montage vers les DR527/725 FMIC
GT30R
790cfm à 1.5bar, 52 lb/min, 375-525whp, Turbo Kit
Full Boost 4000-4500tr/min
Garrett GT35R
880cfm à 1.5bar, 65 lb/min, 450-650whp, Turbo Kit
Full Boost 4400-4900tr/min
Garrett GT40R
72 lb/min, 550-750whp, Turbo Kit
Full Boost 4900-5400tr/min
Garrett GT42R
1100cfm, 85 lb/min, 750-900whp, Turbo Kit
Turbo twin scroll
GT28 vs Gt42
VF52 vs 18G
VF52 vs Dominator 3.0R
Enquête réalisée sur le forum NASIOC :
Turbo Type ----------- Approx flow @ pressure1 HP approx equals 1.45 CFM
1 CFM approx equals 0.0745 lb of air/min
0.108 Lb/min approx equals 1 hp
1 Meter cubed/sec = 35.314 CFS = 2118.867 CFM
1 KG/sec = 132 lbs/min approx equals 1771.812 CFM
1 bar = 14,7 PSI
Power coversions :
1 PS = 0.9859 HP = 75 Kgf m/sec
1.3405 HP = 1 KW
1 HP = 746 watts
Stock Turbo ---------- 360 CFM at 14.7 PSI
IHI VF 25 ------------- 370 CFM at 14.7 PSI <--- estimated
IHI VF 26 ------------- 390 CFM at 14.7 PSI <--- estimated
T3 60 trim ------------ 400 CFM at 14.7 PSI
IHI VF 27 ------------- 400 CFM at 14.7 PSI <--- estimated
IHI VF 24/28/29 ----- 410 CFM at 14.7 PSI <--- estimated
========= 422 CFM max flow for a 2 Liter at .85 VE pressure ratio 2.0 (14.7 PSI) 7000 RPM =======
IHI VF 23 ------------- 423 CFM at 14.7 PSI
FP STOCK HYBRID -- 430 CFM at 14.7 PSI <--- derived from HP potential listed on web
IHI VF-30 ------------- 435 CFM at 14.7 PSI <--- estimated
SR 30 ----------------- 435 CFM at 14.7 PSI
IHI VF-22 ------------ 440 CFM at 14.7 PSI <--- refigured
T04E 40 trim -------- 460 CFM at 14.7 PSI
========= 464 CFM max flow for a 2.2 Liter at .85 VE pressure ratio 2.0 (14.7 PSI) 7000 rpm =======
PE1818 -------------- 490 CFM at 14.7 PSI <--- estimated from max flow numbers
Small 16G ------------ 505 CFM at 14.7 PSI
ION Spec (stg 0) --- 525 CFM at 14.7 PSI <--- per vendor post 12-27-2002
========= 526 CFM max flow for a 2.5 Liter at .85 VE pressure ratio 2.0 (14.7 PSI) 7000 RPM =======
Large 16G ----------- 550 CFM at 14.7 PSI
SR 40 ----------------- 595 CFM at 14.7 PSI
18G ------------------- 600 CFM at 14.7 PSI
PE 1820 -------------- 630 CFM at 14.7 PSI <--- estimated from max flow numbers
20G ------------------ 650 CFM at 14.7 PSI
SR 50 ---------------- 710 CFM at 14.7 PSI
GT-30 ---------------- 725 CFM at 14.7 PSI
60-1 ----------------- 725 CFM at 14.7 PSI
GT-35R -------------- 820 CFM at 14.7 PSI
T72 ------------------ 920 CFM at 14.7 PSI <--- Note you would have to spin a 2.0 L engine at about 14,000 rpm to flow this much air.
IHI VF 25 ----------- 395 CFM at 18 PSI <--- estimated
IHI VF 26 ----------- 400 CFM at 18 PSI <--- estimated
T3 60 trim ---------- 410 CFM at 20 PSI
IHI VF 27 ----------- 420 CFM at 18 PSI <--- estimated
IHI VF 24/28/29 -- 425 CFM at 18 PSI <--- estimated
IHI VF 23 ----------- 430 CFM at 18 PSI <--- estimated
IHI VF-30 ----------- 460 CFM at 18.0 PSI <--- estimate based on trap speeds of cars running this turbo
AVO 320HP -------- 465 CFM at 17.5 PSI
T04E 40 trim ------ 465 CFM at 22 PSI
FP STOCK HYBRID- 490 CFM at 18.0 PSI
IHI VF-22 ---------- 490 CFM at 18.0 PSI <--- refigured
SR 30 --------------- 490 CFM at 22 PSI
Small 16G ---------- 490 CFM at 22 PSI
ION Spec (stg 0) - 500 CFM at 19 PSI <--- per vendor post 12-27-2002
PE1818 ------------ 515 CFM at 22 PSI <--- estimated from manufactures rated max power
Large 16G --------- 520 CFM at 22 PSI <--- upgraded flow some on review of compressor map
========= 526 CFM max flow for a 2 Liter at .85 VE pressure ratio 2.5 (22 PSI) 7000 rpm =======
========= 578 CFM max flow for a 2.2 Liter at .85 VE pressure ratio 2.5 (22 PSI) 7000 rpm =======
HKS GT2835 ------- 580 CFM at 22 PSI
MRT 400 ------------ 580 CFM at 16 PSI
AVO 400HP -------- 580 CFM at 17.5 PSI
MRT 450 ------------ 650 CFM at 19 PSI
AVO 450HP -------- 650 CFM at 20.0 PSI
SR 40 ---------------- 650 CFM at 22 PSI
========= 658 CFM max flow for a 2.5 Liter at .85 VE pressure ratio 2.5 (22 PSI) 7000 rpm =======
Comparatif de turbos :
Catalogues des fabricants de turbos :
Garrett
Hitachi
Holset / Cummins
Borg Warner (Schwitzer)
Toyota
IHI
Borg Warner (KKK)
Komatsu
Mitsubishi (MHI)
Bien évidemment le choix du turbo doit se faire en fonction des caractéristiques du moteur et des objectifs de performance. Ainsi un petit turbo offrira un temps de réponse court et sera très bien pour les bas régime, mais il risque fort à haut régime de saturer et la wastegate devra être régler de façon à " décharger " tôt afin d'éviter que le turbo ne fasse trop bouchon (la pression dans le collecteur d'échappement peut alors être très importantes, défavorable donc au remplissage du cylindre et dans des cas extrêmes, favorisé l'affolement de soupapes !). Bref, les fabricants de turbo ont donc sorti des MAP qui définissent ainsi les caractéristiques des carter turbine et des roues de compresseurs. Les voici expliquées :
MAP compresseurs et TRIM
Le TRIM définit le rapport entre le petit diamètre (D2) de la roue sur le grand diamètre (D1) ramené au carré et multiplié par 100 (quoique l'on trouvera parfois des TRIM 45 ou 0.45 qui indique simplement que la multiplication par cent n'a pas été effectuée !).
Voici une MAP de compresseur du turbo T3 trim 60 de Garrett :
Alors en abscisse (axe horizontale pour rappel !), on trouve le débit traversant le turbo en livre/minute (unité anglaise qu'utilise le français Garrett !), et en ordonné se trouve le rapport entre la pression sortie compresseur et l'entrée (comme en entrée, on a environ un bar on dira que les valeurs de l'axe sont celle de la sortie compresseur). Bon vous l'aurez compris le but recherché est de faire fonctionner le moteur dans la zone intérieur des limites. A l'intérieur de cette zone se trouve des courbes parallèles d'isovitesse turbo (en tr/min), et des zones d'iso-rendement en forme de " patate " (la zone de meilleur rendement est celle du milieu).
Expliquons un peu les limites :
Limites survitesses : le turbo possède sa propre limite vitesse qui est lié au diamètre de sa roue. en effet, plus grand est le diamètre plus grand sera la force centrifuge auquel sera soumis l'extrémité de la roue. Souvent la vitesse maxi autorisé en bout de pale est de 450 m/s. Dépasser ces limites serait prendre un risque de contact entre pale et turbine d'autant plus que les températures ont tendance à allonger les ailettes.
Limites rendement : le rendement compresseur exprime la capacité du turbo à fournir de l'énergie sous forme de pression et non pas de température (car on cherche à échauffer l'air admission au minimum). Pour les matheux voici la formule :
Ici T2 et T1 sont respectivement les températures sortie et entrée compresseur, et même principe pour les pressions P2 et P1. le sigle gamma désigne 1.41 (coefficient polytropique !). Au delà de la limite de rendement le réchauffement de l'air peut être néfaste aussi bien pour les parties alu du compresseur que pour le moteur (cliquetis).
Limites pompage : le pompage se produit quand on a un débit d'air faible avec une forte pression dans la ligne admission. En effet, sous une faible inertie de la veine gazeuse (par un petit débit) la forte pression en sortie turbo tend à refouler les gaz par l'entrée ( !!), créant ainsi de fortes variations de débit, se traduisant par de fortes vibrations au niveau de la roue. En roulant en stabilisé on obtient rarement du pompage, il se produit plutôt lors d'un relevé de pied par exemple.
Reprenons la MAP du compresseur pour comprendre...
En vert disons que vous roulez en stabilisé sur le régime de couple (donc assez près du rendement optimale si le turbo a été judicieusement choisi !),et d'un coup vous relevez le pied. Le débit baisse d'un coup et la pression augmente instantanément (du fait de la fermeture papillon), on passe alors sur le point rouge. Bien sur la pression va vite chuter, mais en l'espace de quelques dixièmes de seconde, on sera dans la zone de pompage, d'ou usure des pales dut au vibrations engendrées.
On voit donc bien l'intérêt de la dump-valve. Cet élément, qui fonctionne comme une wastegate, permet de décharger les conduits d'admission lors de violents levée de pied (au son pshiiiit caractéristique), et permet en évitant le pompage d'améliorer la fiabilité du turbo mais également son temps de réponse lors d'un écrasé de pied suite à un levé. Le point bleu sur la figure indique donc un levé de pied avec dump valve. Les constructeurs utilise aussi les dump valves (ils les appellent souvent pop-off) mais rejette l'air admission en amont du compresseur plutôt qu'a l'air libre (ex : Renault Megane RS). Il n'y a plus le fameux pchiiiit !
Maintenant, en ayant expliqué les limites du champ compresseur, on comprends mieux pourquoi il est très important d'avoir un turbo adapté à son moteur. Tout dépend donc du besoin en air, et donc le débit, que pourra recevoir le moteur (dépend de sa cylindré, perméabilité culasse, …).
Avec les schémas ci-dessous, on compare notre fameux T3 au trim 60 avec son homologue avec un trim 50. On constate qu'en passant du premier au second, que le champ s'est déplacé vers la gauche (vers des débits plus faible). A nous de connaître le besoin en air de notre moteur pour choisir le bon turbo.
Bien entendu on ne peut rien faire de précis sans un banc d'essais et l'instrumentation qui va bien, mais on peut s'approcher un peu des valeurs réelles par calcul.
Le A/R
L'autre caractéristique importante du turbo est le A/R avec le A désignant la surface d'entrée du carter de turbine, et le R, le rayon de la volute. On parlera en fait de perméabilité turbine, à savoir que plus le A/R sera faible, plus la perméabilité sera faible. C'est à dire, que le turbo pourra très tôt fournir de la pression (d'ou un faible temps de réponse) mais occasionnera à haut régime une pression collecteur d'échappement très élevé néfaste aux perfos. Un réglage de la wastegate s'impose alors pour trouver le bon compromis.
Un A/R élevé aura donc un temps de réponse important, mais sera plus approprié pour les hauts régime. La encore tout est histoire de compromis …
Understanding Compressor Maps
It's all about airflow whether it is expressed in cubic feet per minute (cfm) or pounds per minute (lb/min). In any case it takes about 150 cfm per 100hp....so for 300 horsepower you need a turbo that puts out about 450cfm. The real question is what pressure ratio or boost in psi is this airflow possible with your engine. You need to start thinking airflow and not "boost".
Operating characteristics : The compressor operating behaviour is generally defined by maps showing the relationship between pressure ratio and volume or mass flow rate. The useable section of the map relating to centrifugal compressors is limited by the surge and choke lines and the maximum permissible compressor speed.
Surge line : The map width is limited on the left by the surge line. This is basically "stalling" of the air flow at the compressor inlet. With too small a volume flow and too high a pressure ratio, the flow can no longer adhere to the suction side of the blades, with the result that the discharge process is interrupted. The air flow through the compressor is reversed until a stable pressure ratio with positive volume flow rate is reached, the pressure builds up again and the cycle repeats. This flow instability continues at a fixed frequency and the resultant noise is known as "surging".
Choke line : The maximum centrifugal compressor volume flow rate is normally limited by the cross-section at the compressor inlet. When the flow at the wheel inlet reaches sonic velocity, no further flow rate increase is possible. The choke line can be recognised by the steeply descending speed lines at the right on the compressor map.
Traduction logicielle du texte ci-dessus :
Le compresseur d'arrangement le trace est tout au sujet de flux d'air s'il est exprimé en pieds cubes par minute (cfm) ou livres par minute (lb/min). De toute façon il faut environ à 150 le cfm par 100hp....so pour 300 puissances en chevaux que vous avez besoin d'un turbo qui eteint environ 450cfm. Est la vraie question ce que le rapport ou la poussée de pression en livre par pouce carré est ce flux d'air possible avec votre moteur. Vous devez commencer à penser le flux d'air et pas la "poussée".
Caractéristiques de fonctionnement : Le comportement de fonctionnement de compresseur est généralement défini par des cartes montrant le rapport entre le rapport de pression et le volume ou le taux de écoulement de la masse. La section utilisable de la carte concernant les compresseurs centrifuges est limitée par les lignes de montée subite et d'évacuation et la vitesse permise maximum de compresseur.
Ligne de montée subite : La largeur de carte est limitée du côté gauche par la ligne de montée subite. Ceci fondamentalement "cale" de la circulation d'air à l'admission de compresseur. Avec un débit trop petit et un rapport trop élevé de pression, l'écoulement peut plus n'adhérer au côté d'aspiration des lames, avec le résultat que le procédé de décharge est interrompu. L'air traversent le compresseur est renversé jusqu'à ce qu'un rapport stable de pression avec le taux de débit positif soit atteint, la pression s'accumule encore et les répétitions de cycle. Cette instabilité d'écoulement continue à une fréquence fixe et le bruit résultant est connu comme "augmentant".
Ligne d'évacuation : Le taux de débit centrifuge maximum de compresseur est normalement limité par la section transversale à l'admission de compresseur. Quand l'écoulement à l'admission de roue atteint la vitesse sonique, aucune autre augmentation de débit n'est possible. La ligne d'évacuation peut être identifiée par les lignes en pente rapide descendantes de vitesse à la droite sur la carte de
compresseur.
MAP Turbos Mitsubishi
TD04-09B
TD04-13G
TD04-15G
TD04H-18T
TD05-14B
TD05-14G
TD05-16G small wheel
TD05-16G large wheel
TD06-17C
TD06-20G
TS04
MAP Turbos IHI
MAPs RHF Series
Specs RHF Series
MAP Turbos KKK
K03-2072
K04-0025
K14-2464
K16-2467
K24-2470
K26-2664G
K26-2470R
RS2-2672
MAP Turbos Garrett
T3 Series
T3-40
T3-45
T3-50
T3-60
T3-Super 60
T4 Series
T04B-60-1
T04B-62-1
T04B-H3
T04B-S3
T04B-V1/V2
T04E-40
T04E-46
T04E-50
T04E-54
T04E-57
T04E-60
T Series
T-61
T-64
T-66
T-68-1
T-70
T-72
T-76
____________________________
Source: SubMag.net